Accelerating sino-atrium computer simulations with graphic processing units.
نویسندگان
چکیده
Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.
منابع مشابه
Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal
Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...
متن کاملAccelerating VASP electronic structure calculations using graphic processing units
We present a way to improve the performance of the electronic structure Vienna Ab initio Simulation Package (VASP) program. We show that high-performance computers equipped with graphics processing units (GPUs) as accelerators may reduce drastically the computation time when offloading these sections to the graphic chips. The procedure consists of (i) profiling the performance of the code to is...
متن کاملNumerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units
In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...
متن کاملAccelerating Missile Threat Simulations Using Personal Computer Graphics Cards
The authors use inexpensive personal computer graphics cards to perform the intensive image-processing computations done in a heat-seeking missile's tracking systems and thereby dramatically reduce the execution time of missile threat simulations used by military mission planners. Using an innovative processing algorithm, these calculations are accomplished up to 3.5 times faster in graphic car...
متن کاملStudy of Optimal Area of Atrium for Daylight Utilization (Case Study: Administrative Building in Qazvin, Iran)
Atrium is a popular architectural feature utilized widely by building designers and owners to bring various benefits such as adequate daylight, circulation spaces and surfaces for landscape applications. But atrium problems in tropical climates such as excessive daylight, glare and high temperature, which lead to increase building energy demand, have been reported. Atrium has been used with var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bio-medical materials and engineering
دوره 26 Suppl 1 شماره
صفحات -
تاریخ انتشار 2015